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ANALOGY BETWEEN DENSITY STRATIFICATION AND ROTATION EFFECTS 

V. A. Vladimirov UDC 532.5.51+532.5.527 

The resemblance (analogy) between the properties of rotating and density-stratified 
flows was first noted by Rayleigh in 1916 [i]. Since that time, a whole series of studies 
have been published in which this analogy is successfully employed to solve problems of 
wave theory and stability theory and to describe secondary regimes and turbulence. Some of 
these achievements are reviewed in [2, 3]. 

Although the successes achieved in using the analogy to obtain new results are impor- 
tant, our general understanding of the question is unsatisfactory. One problem is the dis- 
connectedness of the examples with references to which the analogy has been demonstrated. 
The degree of proximity on the basis of which results from the two domains are considered to 
be analogous varies from identicalness to very distant similarity. There has been no classi- 
fication of the examples of the analogy on the basis of general principles. The limits of 
applicability of the analogy remain unclear. The present study is an attempt to clarify these 
points. 

From the most general standpoint, the analogy between stratification and rotation ef- 
fects is a consequence of the known principle of mechanics which states that following tran- 
sition to the corresponding moving frame of reference any part of the true acceleration of 
an object can be regarded as a "body force" field. This approach is attractive because of 
its simplicity and universality. However, it turns out that in all nontrivial cases it is 
useless owing to the velocity dependence of the "body force" field. A good example is pro- 
vided by the equations of motion of a fluid written in a rotating coordinate system. Here 
the Coriolis force has to be taken as the "body force." Clearly, the introduction of "body 
forces" of this sort cannot give any basis for transposing the known results for a uniform 
gravitational field to a new domain. 

At the same time, there are more subtle and also more productive means of explaining 
the analogy. At present, the only possible way of unifying the theories is mathematical. 
The motions of a rotating and a stratified fluid will be analogous if they are governed by 
equations of similar form. The degree of similarity must be such that the description of a 
certain class of motions in one field makes an important contribution to the solution of a 
related problem in the other. Given this approach, the analogy question reduces to the prob- 
lem of classifying the corresponding differential equations. In general form this problem 
is extremely complex. The present study offers several examples illustrating the possi- 
bility of progressing along this path. Two levels of analogy, differing considerably with 
respect to the rigorousness of the requirements, are examined: i) the level of similarity 
of the initial nonlinear equations of motion of the rotating and stratified fluids; 2) 
the similarity of the linearized equations Of motion or their corollaries (e.g., spectral 
problems for linear waves and stability theory). 

Comparison of the equations makes it possible to state that the properties of the mo- 
tions of a rotating fluid are, generally speaking, much more complex than those of a strati- 
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lied fluid. In order to obtain coincidence (or substantial similarity) of the equations of 

motion it is necessary to assume that the motions in the rotating fluid either possess a high 

degree of symmetry or ~re small in amplitude (or both). The analysis of the examples is 
directed toward establishing the limits of applicability of the analogy and studying the gen- 
eral qualitative properties of rotating flows. 

Rigid-Body Rotation Effects 

Consider the unsteady motions of an incompressible viscous fluid homogeneous with re- 
spect to density in a frame of reference rotating at the constant velocity ~/2. The equa- 

tions of motion are written in the form [4] 

D o u 4 - ~  • u ~ - - V p *  ,2-vAu,  d iv  u ~ 0 ,  Do~---O/Ot + u . v ,  ( l )  

where u is the velocity vector; p* is the modified pressure, which includes the centrifugal 

force; V is the vector gradient; & is the Laplacian operator; and ~ is the kinematic vis- 

cosity. 

Let n be a unit vector representing a fixed (in the rotating frame of reference) direc- 
tion and forming with vector ~ the angle 0 (0 ~ Q ~-~ 7). We will study the class of solu- 

tions of (i) whose velocity fields do not vary along the direction of n. 

We begin by confining our attention to the case of an ideal fluid (v = 0). We intro- 
duce the Cartesian coordinate system x, y, z, making the x axis parallel to the vector n, 
i.e., n = (i, 0, 0). For the class of motions in question the velocity fields u = (u, v, w) 
and the pressures p* do not depend on the x coordinate: 

u = u(y,  z, t), p*  = p*(y ,  z, t).  ( 2 )  

The double angular velocity vector ~ = (~I, ~2, ~3). 

After introducing the formal notation 

we can express system of equations (i) for motions (2) in the form 

Dv = - - P u + P ~ , D w  = - - P z + 9 ~ ,  D9 = O, v u + w z = 0, (4)  

D----O/Ot + vO/@+wO/Oz, 

where p ~ p* -- ~i? + (i/2)(~3y -- ~2z)2; ~ is the stream function for which v = -~z' w = ~y. 

The indices of the independent variables everywhere denote partial derivatives. 

In terms of the unknown functions p and @ system (4) can be represented in the form 

DA~ = 9~g3--gzg2, D9 = O, D---=O/Ot--~zO/Og +~uO/Oz. (5)  

For the class of steady motions the change of unknowns v ~ /PVc, w ~ 0~w c reduces sys- 

tem (4) to the form 

9Dcuc ~ - - P u  + 9g2, 9D~wc = - - P z  + 9~,  
(6) 

D~9 : O, (v~) u @ (w~) z : O, Dc ~ v~O/Oy -~ wr 

It is immediately clear that the quantity p in (4)-(6) can be formally treated as the 
fluid density, and g is a uniform gravitational field. In this case system (6) coincides 
with the exact equations of motion of a stratified fluid, and (4), (5) with their approxi- 
mate form, known as the Boussinesq approximation [5]. It should be noted that in Eq. (6) the 
quantities v c and w c are not velocity components. However, if we confine ourselves to form 

(6) and no-flow conditions at solid boundaries, then v c and w c can be formally treated as 

such. 

The form of Eqa. (4)-(6)justifies transferring both specific results and general quan- 
titative principles from the well-studied case of stratified flows to the motions of class 
(2). In order to simplify the further discussion relating to an ideal fluid, the coordi- 
nate axes y and z will be so selected that the vector ~ lies in the x, y plane. In this 

case ~ = 0 and from (3) there follows 

9 --~- u + ~ z ,  g = (0, 0, ~2) ,  ~2  : ~ s in  0, Q ~ ]~{ .  ( 7 )  

The following are important examples. 
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i. A flow (2) of the particular form 

= Uo(Z), v ~  O, ~ ~ 0 ( 8 )  

is equivalent, in terms of (4)-(6), to a state of hydrostatic equilibrium with density Q(z) = 
uo(z) § ~iz. The "Archimedean" stability (instability) of this equilibrium is determined by 

the sign of the expression 

f ~ F(O, ~) -~ gPz = Q~ s in  0(~ @ s in  0), ( 9 )  

where ~ ~ Uoz/~. The domain of definition of the function F(~,  ~) is the strip 0 ~ G ~ ~, 
-~ < ~ < +~ (see Fig. i). The equality F = 0 holds on the boundaries of the strip AA' (0 : 0), 

BB' (8 = 7), and on the curve OCO' (~ = --sin 9). The regions F > 0 and F < 0 are located to 
the right and left of the curve OCO', respectively. The fact that F changes sign means that 
all the motions (8), at least locally, can be split into three qualitatively different groups. 
When F > 0 the "density" p decreases "upwards" and when F < 0 it increases. The equality F = 
0 corresponds to neutral "stratification" p = const. If throughout the flow F > 0, then in 
the class of perturbations (2) the flow is stable; small perturbations take the form of in- 
ternal waves. In the opposite case F < 0 the flow is unstable; the perturbations develop in- 
to "convective" motions. 

2. Somewhat more general than (8), the flow 

= Uo(Z) ,  v = Vo(Z), w --=- 0 ( 1 0 )  

is equivalent, in terms of (3)-(6), to a parallel flow of stratified fluid with a velocity 

discontinuity. The stability theory of such flows is highly developed [2, 6]. Here F again 

plays a key role, being the square of the Brunt--V~is~l~ frequency. In particular, when F < 0 
we have a flow with a velocity discontinuity under conditions of unstable, in the Arehimedean 
sense, "density stratification." 

3. For more general fields with Uy # 0 and py,# 0, where the latter means that the "den- 
sity" p varies across the "acceleration of gravity' g, hydrostatic balance cannot exist. 
Therefore assigning initial data with Uy ~ 0, v = w = 0 will always lead to unsteady motion. 

Triple Role of Rotation 

There is a widespread qualitative notion that the general rigid-body rotation of a fluid 
has a stabilizing effect on any motions in it. Stabilization means a perfectly definite qual- 
itative change in the properties of the motions on transition from ~ = 0 to ~ ~ 0. The follow- 
ing two types of changes are usually understood: The motions become wavy (i.e., internal oscil- 
latory motions with a characteristic set of natural frequencies develop); the stability proper- 
ties of the flows are "amplified." 

The clearest interpretation of these ideas can be given for motions of class (2). In this 
case F > 0 corresponds to stabilization and F < 0 to destabilization. It is evident from Fig. 
1 that even for such a narrow class of motions the effect of rotation can be qualitatively dif- 
ferent and there is no unambiguous answer. At the same time, the notion that rotation plays a 

stabilizing role has a certain basis in fact. In this connection it is useful to consider the 
class of exact solutions of Eq. (4) expressed in terms of a single arbitrary complex function 
f (y) : 

These motions consist of "upward'--"downward" oscillations (in the direction of g) of the 
planes y = const with frequency ~2. The arbitrariness of f(y) means that each plane oscil- 
lates independently of the others. In terms of (4) oscillations (ii) take place under the 
influence of the buoyancy force about the equilibrium density position. If in (ii) we take 

B ~ 01 B r 

F<O C -~-~/2 ~>0 
' ,) ' , . .j 

Fig. i 
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f~y) = Aeiky, we obtain the familiar Bjerknes waves [4, 7, 8], for which the constants A and 
k represent the complex amplitude and wave number. It should be noted that for solutions (Ii) 

the nonlinear terms of the equations of motion (i), (4) are identically equal to zero, so 
that (ll) is a solution of both the exact equations of motion and their linearized variant. 
In the linear problem the Bjerknes waves play a fundamental role, since together they form 
a complete system of functions suitable for representing the solution of the Cauchy problem 
with arbitrary initial data. 

From this it follows that solutions (ii) give grounds for concluding that rotation has 
a stahilizing effect on any motions (I) of infinitely small amplitude. However, this con- 
clusion is almost self-evident since motions with amplitudes ~ § 0 fall on the interval O0' 
of the ~ = 0 axis (see Fig. i) on which F ~ 0. All motions of finite amplitude (ii) also 
fall on this same interval, but their waviness no longer provides a basis for a general con- 
clusion. 

The motions with F = 0, which correspond to neutral stratification with respect to the 
"density" p, proved to be especially distinctive. Without loss of generality, for these 
we can put p = 0 in (4). They include all motions (i) whose fields do not vary along the 
direction of the vector ~. In Fig. 1 they correspond to the straight lines 6 = 0 and ~ = ~. 
A noteworthy result here is the fact that the motion is not affected by the general rota- 
tion. For the same initial and boundary conditions the flow is the same in all rotating 
frames of reference. This result was first obtained by Taylor [9]. 

Thus, even within the narrow class of motions (2) the general rigid-body rotation can 
play three qualitatively different roles corresponding to stabilization (F > 0), destabili- 
zation (F < 0), and total lack of any effect on the motion (F = 0). These very different 
effects of rotation on different motions is the most important factor limiting the analogy 
between stratification and rotation effects. The limitation is a general one. In particu- 
lar, it arises in connection with the problem of the stability of flows with helical and cir- 

cular streamlines [i0, ii]. 

Parallel Flows in a Rotating Layer 

An example of a concrete situation, the study of which reduces to the description of 
motions (2), is the linear problem of the stability of a unidirectional flow in the gap be- 
tween two parallel rotating planes. This problem has been studied independently [12], but 
many assertions can be obtained by simple transposition in the known results for parallel 

stratified flows [2, 6]. 

In the coordinate system x, y, z the positions of the planes are given by the equa- 
tions z = 0 and z = H. The velocity field of the main flow has the form (8) with arbitrary 
function Uo(Z), and for (4) is the state of rest with "density" p (3), (7). A necessary 
and sufficient condition of its existence is g • Vp = O. Hence there follows ~3Uoz = 0, 

i.e., in accordance with (7) ~3 = 0. 

Let u', v', w', p' be small perturbations of the flow satisfying Eq. (!) linearized on 

(8) and boundary conditions 

w'  ~ 0 at z ~ 0 and ~ H .  ( 1 2 )  

The linear stability problem reduces to the study of the properties of the normal waves 

[u', v', w', p ' ]  ~- [U(z), V(z), W(z), P(z)]ei(kx+zY-~t). (13) 

Neither the main flow (8) nor the perturbations (13) vary along the direction of the 
vector Rn = (7, --k, 0), R 2 ~ k 2 + 12, i.e., they belong to class (2). Therefore the study 
of the properties of (13) is equivalent to the stability problem for the corresponding strati- 
fied flow in the Boussinesq approximation. In order to convert (13) to the form (2) it is 
necessary to carry out a rotation of the coordinate system about the z axis, introducing in- 
stead of x, y the coordinates xl, Yl so that the x~ axis is parallel to n and the Yl axis 
parallel to the wave vector k = (k, 7, 0). In the new coordinate system k = (0, R, 0). To 

flow (8) in terms of (4), (7) there corresponds 

p = (l~o + Sz) /R,  vl = kuolR, Wo ~ O, g = (0, O, SIR) ,  ( I 4 )  

where S ~ k-~; vl is the velocity component along yl. 

The equation for the amplitude W(z) of the plane~arallel stratified flow (14) has the 

known form [2, 6] 
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~ (Wzz -- B 2 [ ~ )  - -  ~ T i U l z z W  - -  B2g~zW : 0 ,  ( 1 5 )  

where ~z ~ ~ + Rvl; g z S/R. Substitution of (14) in (15) leads to the equation 

~ ( W z z  - -  R2W) - -  ~kU0zzW ~ R 2 F W  ~ O. (16) 
Here we have used the notationz ~ -t~ + kuo, F ~ -Ozg = S(S + lUoz)/R. In terms of strati- 

fied flow the quantity F is the square of the Brunt--V~is~l~ frequency. 

The solution of the spectral problem (16), (12) for all k, ~ gives the answer to the 
question of the stability of the flow. The existence of an eigenvalue ~ with Im@ > 0 signi- 
fies instability. In the particular case k = 0 we get the above-mentioned equivalence to 
the problem of the stability of hydrostatic equilibrium. The stability (instability) is de- 
termined by the sign of the quantity F. When k # 0, the results are less strong. The suf- 
ficient condition of stability with respect to the Richardson number (Miles--Howard theorem) 

[2, 6] is rewritten in the form 

. . . . .  /~ ~o~ ~ i /4 .  (17) 

By direct transposition of the known results [2, 6] it is possible to obtain a further ser- 
ies of statements concerning the properties of the problem (16), (12), including the spectral 
limits, the stability and instability conditions, and even the results for Uo(Z) profiles of 

specific form. 

However, it should be especially emphasized that despite the possibility of the literal 
transposition of a series of results the stability problems for stratified and rotating flows 

are qualitatively different. This difference finds expression in the fact that the dependence 
of RzF in (16) and (17) on k and Z is so strong that for any given profile uo(z) by varying 

k and 7 it is always possible to violate (17) and even cause J and F to change sign. This 
situation has already been examined in discussing (9) and Fig. i. In the particular case 
~i = 0 the sign of expression R2F = ~2~2(~2 + Uoz) does not depend on k and Z. 

A very simple example with an exact solution is the problem of the stability of the 
linear profile Uo(Z) = • with constant z . Equation (16) takes the form 

�9 2 ( W ~  - -  R ~ W )  + R2FW : 0 ,  ( 1 8 )  

where T = -~ + k• R2F = S(S + ~z). For (18) we formulate the boundary-value problem in the 
half-space 0 ~ z < ~: 

W(O) : O, W(z) -+  O as z - - + o o ~  

In this case the quantity J = S(S + 7•215 z does not depend on z. When ~i # 0 for any 
fixed ~ by varying k and 7 it is possible to obtain any value of J (-oo < j < + ~). Criterion 

(17) gives a sufficient condition of stability only for harmonics k and ~ with J ~ 1/4. 

After substituting the independent variable ~ = R[z -- (~/k• from (18) we obtain the 
equation 

w h e r e  ~2 5 ( 1 / 4 )  -- J .  S o l u t i o n s  o f  (19)  a r e  t h e  f u n c t i o n s  W = v ~ Z v ( x ~ ) ,  w h e r e  Z~ i s  an  
a r b i t r a r y  c y l i n d r i c a l  f u n c t i o n  o f  i n d e x  v .  

The a r g u m e n t  ~ i s  v a r i e d  i n  t h e  c o m p l e x  p l a n e  a l o n g  a r a y  d e p a r t i n g  f r o m  t h e  p o i n t  ~ = 
- - R ~ / k ~ a n d  e x t e n d i n g  t o  i n f i n i t y  (~e~ > 0) p a r a ! l e l  t o  t h e  r e a l  a x i s .  T h i s  r a y  c o r r e s p o n d s  
t o  0 ~ z < ~ .  The c o n d i t i o n  o f  damping  a t  i n f i n i t y  s e l e c t s  f r o m  a l l  Z~ t h e  M a c d o n a l d ' s  
f u n c t i o n s ,  so t h a t  W = / ~ k ~ ( ~ ) .  I t  now r e m a i n s  t o  f i n d  t h e  v a l u e s  o f  ~ c a u s i n g  t h i s  f u n c -  
t i o n  t o  v a n i s h .  E a c h  r o o t  w i l l  g i v e  one  o f  t h e  v a l u e s  o f  t h e  c o m b i n a t i o n  - - R ~ / k z .  S i n c e  
t h e  p o i n t  ~ = 0 i s  a b r a n c h  p o i n t  f o r  K ~ ( ~ ) ,  t h e  r o o t s  m u s t  be  s o u g h t  on t h e  s h e e t  l a r g ~ l  < ~r. 

Thus  t h e  s t r u c t u r e  o f  t h e  s p e c t r u m  i s  d e t e r m i n e d  by t h e  known p r o p e r t i e s  o f  t h e  r o o t s  
o f  t h e  M a c d o n a l d ' s  f u n c t i o n  [ 1 3 ] .  D e p e n d i n g  on t h e  v a l u e  o f  ~ we g e t  one  o f  t h r e e  q u a l i -  
t a t i v e l y  d i f f e r e n t  c a s e s :  

1) v • a p u r e l y  i m a g i n a r y  q u a n t i t y ;  J > 1 / 4 .  I n  a c c o r d a n c e  w i t h  ( 1 7 ) ,  t h i s  i s  a c a s e  
o f  a p u r e l y  r e a l  s p e c t r u m .  And i n  f a c t  i t  c a n  be shown t h a t  t h e  M a c d o n a l d ' s  f u n c t i o n  o f  
p u r e l y  i m a g i n a r y  i n d e x  h a s  a d e n u m e r a b l e  s e t  o f  z e r o s  f o r  ~ r e a l  and p o s i t i v e .  As J § 2 / 4  
t h e s e  r o o t s  t e n d  t o  t h e  p o i n t  ~ = 0;  

2) 0 < v < 3 / 2 ;  --2 < J < 1 / 4 .  T h e r e  a r e  no r o o t s  on t h i s  i n t e r v a l ,  and no s o l u t i o n s  
o f  t y p e  (13)  w i t h  c o r r e s p o n d i n g  k and  ; ;  
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3) ~ > 3/2; J < --2. There are at least two complex-conjugate roots with nonzero imagi- 

nary part. When v = 3/2 these roots merge into one. 

From the above it follows that the profile Uo(Z) = • is unstable for any value of • 
the instability belonging to the same type as is realized in parallel stratified flows where 
the density increases upwards. An exception is the previously mentioned special case ~ = 0. 
Here J = ~2~2(~= + ~)/k=~ =, and accordingly the flow is stable when 9=(~a + • > 0 and un- 

stable when 92(~= + • < 0. 

Case of Nonzero Viscosity 

For a viscous fluid class of motions (2) can be expanded somewhat by including in the 
pressure a gradient with respect to x: ~ E q(t). Then 

u = u ( g ,  z ,  ~), p *  = Po(Y, z, t ) -  q(t)x. ( 2 0 )  

The corresponding generalization of Eq. (4) is written in the form 

Dlu = - - P u  -J- P~z, D1 m = - - P z  J- Pga, 

D1p = q, vy + m~ = 0 ,  D 1 ~ D - -  v(~92/o~ ~~ -}- 02/az2). 
(21) 

The form (21) coincides with the equations of a stratified fluid only when q = 0. This 
case corresponds either to flows associated with the motion of boundaries or unsteady flows. 
When q # 0 fields (20) include, in particular, the interesting class of confined flows in ro- 
tating cylindrical tubes with the generator of the cylinder parallel to the x axis. There 
are no constraints on the shape of the tube cross section or on the angle ~ between the vec- 
tor ~ and the generator. At the tube walls the no-slip condition leads to the requirements 

p = ~2z-- Q:~, v = 0~ w = 0. (22) 

After this the description of the motion of a viscous fluid in a rotating tube reduces 
to problem (21), (22) for two-dimensional density-stratified flows. The latter problem is 
very unusual since it contains sources of "density" O and at the boundaries the values of p 
are given. A more natural interpretation of (21), (22) is obtained by replacing "density" p 
by "temperature" T (i.e., by introducing the equation of state p = T). As a result, at the 

boundaries the "temperature" distribution is given, and the equations DIT = q and Vy + w z = 
" '~ " e it " 0 correspond to the presence of "heat sources" that change the temperature and d ns y 

without expansion (or compression) of the fluid. 

For problem (21), (22) the following statements are obvious, both mathematically and 

physically: 

i) When q = 0 the unique stationary solution is p = ~2z -- ~3Y, v = w = 0 (rigid-body 

rotation of the fluid); 

2) when q = const # 0 there are no stationary solutions with v = w = 0 (corresponding 
to purely longitudinal flow along the tube). The flows with transverse circulation, observed 
in [14, 15], are obtained. The physical cause of this circulation, in terms of (21), is 

that the "heavy" fluid sinks while the "light" fluid rises. 

In the theory of stratified fluids and in the theory of convection a formulation of type 
(21), (22) is artificial and has not been considered. Accordingly, generally speaking, the 

presence of viscosity imposes a limit on the useful application of the analogy. At the 
same time, for stability problems there is no such limitation. In fact, linearized equa- 
tions (21), (22) coincide with the corresponding linear problem of the stability of a viscous 

stratified fluid with density diffusion. 

Ekman Flows 

A simple variant of problem (21), (22) is the confined flow in the gap between two paral- 
lel planes. The Cartesian coordinate system x, y, z is introduced so that z = 0 and z = H 
correspond to the position of the planes. The applied pressure gradient is constant and di- 
rected along the x axis: Px = --q = const. In the plane y, z the flow region is a strip 0 < 
z < H. The vector ~n is the projection of ~ on the plane y, z. The "gravitational field" 
g = (0, --~, ~2) is perpendicular to ~n" The corresponding stationary solution (21), (22) 

is written in explicit form. 
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Since the field g has a nonzero component tangential to the planes, it is natural to 

expect a flow with slippage: 

v = v(z), w =-- O, p = --~g § ~ z  + u(z), (23) 

which represents the "downward"motion of the fluid under the influence of the "force of grav- 

ity." In the transverse direction (along the z axis) the "force of gravity" is balanced by 

the pressure gradient. Substitution of (23) in (21), (22) leads to a boundary value problem 
for a system of ordinary differential equations: 

u = v = 0 a t  z - - : 0 ,  z = H .  

The solution of this problem is rather clumsy and will not be written out. When H + ~ it 
takes the simpler form 

= ~ q  e-h- 's inf~z '  v = - -  9 - - ~ - ( l - - e - ~ c ~  ( 2 4 )  

Here k = /~3/2w. Relations (23), (24) show that the velocity component u, directed along the 
pressure gradient, is rapidly damped with distance from the wall, whereas the transverse com- 

ponent v increases. Consequently, the main flow (in a sufficiently wide channel) is directed 
across the applied pressure gradient. 

Thus, formulating Eq. (i) in terms of (21), (22) makes it possible to obtain a clear 
idea of the mechanics of Ekman flow. This flow is equivalent to the motion of a stratified 
fluid in the gap between two inclined (to the gravitational field) planes. At the same time, 
it is possible to formulate interesting hypotheses about the stability properties of such a 

flow. In particular, the sign of the quantity Pzg3 indicates an increase or decrease in "den- 
sity" along the component of g in the transverse direction relative to the plates. For (24) 
we obtain 

P~g3 ~ f2.2 (Q2 - -  u~) = ~ t - -  ~ e - ~ ( c o s k z  _ s in  kz) . ( 2 5 )  
" 2 3 

For q/~2~3 > 0 (25) has its lowest value at z = 0. Accordingly, for sufficiently large pres- 
sure drops (q > ~2~q3/k -: ~2 2~/~3) we get a layer of fluid in which the "density" increases 
"upwards" and "convective" instability is possible. 

Nonri$id-Body Rotation Effects 

Above, in studying rigid-body rotation effects we made an artificial distinction between 
the rotation of the fluid as a whole and its internal motions, and examined the influence of 
the former motion on the latter. This is a very special approach. The obvious next step 
is to study nonrigid-body rotation effects, without dividing the motion into parts. As an 
example of this more general approach let us consider the class of motions with helical sym- 
metry. 

We introduce the cylindrical coordinate system~, r, z in which the components of the 
velocity vector are u, v, and w, respectively. The initial system of equations of motion 
has the form 

D u  + uv/r = --p~/rpl  , D v  -- u2/r = - -P /P1 ,  

D w  = --PF'91, v~ -[- v/r + u~/r @ w z = 0, Dp~ = 0, ( 2 6 )  

D ~ O/#t + vS/Or @ (u/r)O/8~ + wO/Oz, 

where Pl is the density of the fluid. To begin with, let p~ z i. These motions with heli- 
cal symmetry are characterized by the fact that the corresponding solutions of (26) are func- 
tions of the three independent variables t, r, and ~ ~ a~-- bz. Here a is any natural num- 
ber, and b any real number. 

Using the notation p z (bru + aw) 2, I ~ au -- brw, R ~ a 2 + bir 2, g z b~r/R 2, K z 2ab/R 2, 
we can reduce Eq. (26) for motions with helical symmetry to the form 

(27) 
D~p = 0 ,  vr + v / r + ~ / r = 0 ,  D r ~ 0 ' p t  ~ v0/'0r+(L/r)8/8~. 

This system is similar to the equations of motion of a stratified fluid. The similarity con- 
sists in the existence of a dynamical analogue of the density p, preserved in each fluid 
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particle, and in the form of the force pg on the right side of the second equation. At the 
same time, there are important differences, in particular the presence of the terms with co- 

efficient K. The structure of these terms recalls the Coriolis force. The following ques- 

tion immediately arises: Can system (27) be regarded as analogous to the equations of motion 
of a stratified fluid? The answer reduces to determining the degree of similarity that can be 
identified as an analogy. 

In two particular cases the answer is obvious. Thus, g = 0 corresponds to the class 
of symmetrical rotational motions for which (27) reduces to the form 

Dv = --p~ + 9g, D w  : - - P v  Dp : O, vr + v/r + (28) 

+ Wz = O, D -~ O/Ot + vO/Or + wa/Oz, 

where g = i/r~; p = (ru)2; without loss of generality b has been taken equal to --I. System 
(28) coincides with the equations of a stratified fluid in the Boussinesq approximation with 
the body force field directed along the radius. Therefore, the conclusions concerning the 
degree of similarity of the stratification and rotation effects for symmetrical rotational 

motions practically repeat the results for (4)-(6). The analogue for the quantity F of (9) 

in (28) is 
I d 

F1 ~--- gP" = 7 "~r ( ru)2 = 2u~/r ,  

where ~ is the axial component of the vorticity vector q - u r + u/r. The condition F~ > 0, 
signifying the Archimedean stability of the state of rest (v ~ 0, w ~ 0), is widely known 
as the Rayleigh stability criterion [i, 4, 7]. Ighen ~ = i, b = 0 the motions described by 
(27) are plane and do not depend on the z coordinate. The term with the body force pg is 
equal to zero. These motions were previously examined as the case F = 0 in (4), (9). 

In the general case of arbitrary a and b it is useful to write out the expressions for 

the vortieity. Let n, ~i, and~z be the vorticity components in the directions of the radius 
and D = const and in the direction perpendicular to them. The following representations hold: 

~o - -  ( i / r ) [ ( r ~ / R ) ,  - v~ 1, ~ - -  /~ 

From the first two of Eqs. (27), after eliminating the pressure, we obtain the relation 

( # ~ ~  b 2 D . % +  v0-agr + 7 ~ -  ~- / p + w p ~ = 0  , (30) 

which i s  an analogue of (5) .  

P a r t i c u l a r l y  i n t e r e s t i n g  i s  the  q u e s t i o n  of the  q u a l i t a t i v e  r o l e  of the  q u a n t i t y  p i n  (27) ,  
(30). Here the investigation of the general case is very complicated. At the same time, 
when p # const, the existence of wave motions (real natural frequencies) in the linear ap- 
proximation is widely known. As for the properties of the motions in the exact formulation 
(27), it can be seen that at least flows with p = const are very similar to nonrotating flows 

of a homogeneous fluid. Here it should be noted that by virtue of the equation D~p = 0 
flows with p = const form an independent class. Since the quantity ~ ~ /pp is determined 
correct to a constant, the case @ = const reduces to p = 0 after going over to the corre- 
sponding frame of reference moving with constant velocity along the z axis. Equations (27), 
(30) show that flows with o = 0 are equivalent to the previously examined flows with b = 0. 
In particular, when p = 0, Eq. (30) degenerates into a condition of the type of conservation 
of vorticity in each fluid particle. Then, in accordance with (29), flows with p = 0 have 

a single nonzero vorticity component ~. 

The conclusions reached in this section can be formulated as two propositions. Firstly, 
the presence of helical symmetry (as distinct from motions (2)) does not allow the descrip- 
tion of the motions of a rotating fluid to be reduced to the description of the motions of 
a stratified fluid. Nonetheless, Eqs. (27), (30) for motions with helical symmetry are very 
similar to the equations of a stratified fluid. Secondly, the quantity p in (27), (30) plays 
the role of density in the broader sense: When p = const there are not any internal wave 

motions, whereas when p # const, generally speaking, there are. 

Relaxation of the Requirements 

Now, in (26) let the true density O~ # const. 
with helical streamlines 

The exact solution of (26) is the flow 
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u = uo(r), v ~ O ,  ~ = Wo(r), Pl = Po(r). (31) 

We will consider small-amplitude perturbations satisfying system of equations (26) linear- 

ized on (31). The problem reduces to the study of perturbations in the form of normal waves: 

v'(r ,  ~ ,  z,  t) : R e  V(r)e~(nz+~r (32) 

Here V(r) is the complex amplitude function. After substitution of representations of the 
type (32) for the perturbations u' ' w' ' , v , , p , and p~ in (26) and a series of manipulations, 
it is possible to obtain an equation for the single function ~(r) ~ rV(r) [i0]: 

F \ f4 11 O, (33) 

where m ~ ~ + m(uolr) + kwo; R E k 2 + (milri); o 7 (m 2 + kiri)-l; 8 7 -~0rlP; ~I ~ -~rlP~; 
e Uor + uo/r; F= ~ BG + $~G~; G ~ Uo(~ -- mwor/kr); G~ y u~/r. A remarkable property of Eq. 

(33) is the fact that the quantities associated with stratification and rotation enter into 
the coefficients symmetrically. The formally introduced quantities # and G enter into the 
e~uation along with the density p~ and the centrifugal gravitational field G~. The quantity 
/F= is a generalization of the buoyanny (Brunt--V~is~l~) frequency [2, 6]. 

The no-flow boundary conditions for flow between coaxial circular cylinders of radii 
RI and R2 (RI < Ri) have the form 

~(RI) = ~(Ri) = 0. (34) 

Problem (33), (34) is a spectral problem for the determination of the eigenvalues ~ and 
the eigenfunctions @(r). The existence of an eigenvalue with Im~ > 0 signifies instability. 

For problem (33), (34) the statement generalizing the known Miles--Howard theorem [2, 6] 
holds. A sufficient condition of stability (realness of the spectrum ~) is the satisfaction 
of the inequality [i0, 16] 

Y ~  k~+--r- ~- F2 k w o r + m  t r / r j  

where J is a generalization of the Richardson number. 

It should be stressed that as distinct frompl and GI their analogues p and G proved to 
depend on the form of the perturbation. Therefore, the analogy exists separately for each 
fixed pair of wave numbers k, m. The situation resembles that already discussed in connec- 
tion with (14). 

The strongest result is obtained for symmetrical rotational perturbations (m = 0). In 
this case from (33) there follows the equivalence of the influence on the perturbations of 
stratification and rotation, which implies the possibility of replacing rotation by density 
stratification (and vice versa) without changing the form of the equation. This statement 
is a particular case of the reduction of the complete nonlinear equations of motion to the 
form (28). In the general case there is no such equivalence, and on the basis of (33) it 
is possible to speak only of the similar influence of stratification and rotation on the per- 
turbations, the dependence of G on k and m being so important that for different perturba- 
tions the same fields uo(r) and wo(r) correspond to different signs of G (of. (9), (14), 
and (17)). 

Both flows (31) and perturbations (32) belong to the class of motions with helical sym- 
metry (see previous section). However, there is an important difference between the forms of 
demonstration of the analogy (27) and (33). In particular, the quantities p and G in (33) do 
not coincide with $ and g in (27). The only aim pursued in introducing p and G in (33) was 
to achieve the maximum symmetry in the form of Eq. (33). In rewriting (33) in terms of no- 
tation (27) such strict symmetry cannot be obtained. At the same time it is clear that the 
forms of analogy (27) and (33) are qualitatively similar. Thus, the analogues of the buoy- 
ancy frequencies Prg in (27) and BG in (33) are alike. In particular, p ~ 0 in (27) is 
equivalent to G E 0 in (33). 

Thus, approach (33) with its relaxed requirements makes it possible to find more fruit- 
ful variants of the analogy. A whole series of concrete results obtained on the basis of 
(33) are presented in [i0, ii, 17, 18]. 
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In conclusion, it should be noted that all the motions of a rotating fluid considered 
above possess a high degree of symmetry. The extremely interesting question of the extent 
to which the analogy applies to rotational motions of more general form remains open. An 
attempt to answer this question is made in [19], which includes a generalization of the so- 
called Taylor--Proudman theorem. This is closely analogous to the well-known blocking effect 
in a stratified fluid [2]. Unfortunately, this generalization was obtained only for narrow 
classes of rotational flows. 

The author wishes to thank L. V. Ovsyannikov for useful discussions. 
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